15 research outputs found

    Behavioral and brain pattern differences between acting and observing in an auditory task

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent research has shown that errors seem to influence the patterns of brain activity. Additionally current notions support the idea that similar brain mechanisms are activated during acting and observing. The aim of the present study was to examine the patterns of brain activity of actors and observers elicited upon receiving feedback information of the actor's response.</p> <p>Methods</p> <p>The task used in the present research was an auditory identification task that included both acting and observing settings, ensuring concurrent ERP measurements of both participants. The performance of the participants was investigated in conditions of varying complexity. ERP data were analyzed with regards to the conditions of acting and observing in conjunction to correct and erroneous responses.</p> <p>Results</p> <p>The obtained results showed that the complexity induced by cue dissimilarity between trials was a demodulating factor leading to poorer performance. The electrophysiological results suggest that feedback information results in different intensities of the ERP patterns of observers and actors depending on whether the actor had made an error or not. The LORETA source localization method yielded significantly larger electrical activity in the supplementary motor area (Brodmann area 6), the posterior cingulate gyrus (Brodmann area 31/23) and the parietal lobe (Precuneus/Brodmann area 7/5).</p> <p>Conclusion</p> <p>These findings suggest that feedback information has a different effect on the intensities of the ERP patterns of actors and observers depending on whether the actor committed an error. Certain neural systems, including medial frontal area, posterior cingulate gyrus and precuneus may mediate these modulating effects. Further research is needed to elucidate in more detail the neuroanatomical and neuropsychological substrates of these systems.</p

    Mismatch task conditions and error related ERPs

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The N200 component of event related potentials (ERPs) is considered an index of monitoring error related responses. The aim of the present work was to study the effect of mismatch conditions on the subjects' responses in an auditory identification task and their relation to the N200 of stimulus-locked ERPs.</p> <p>Methods</p> <p>An auditory identification task required to correctly map a horizontal slider onto an active frequency range by selecting a slider position that matched the stimulus tone in each trial. Fourteen healthy volunteers participated in the study and ERPs were recorded by 32 leads.</p> <p>Results</p> <p>Results showed that the subjects' erroneous responses were equally distributed within trials, but were dependent on mismatch conditions, generated by large differences between the frequencies of the tones of consecutive trials. Erroneous trials showed a significantly greater negativity within the time window of 164-191 ms after stimulus, located mainly at the Cz and Fz electrodes. The LORETA solution showed that maximum activations, as well as maximum differences, were localized mainly at the frontal lobe.</p> <p>Conclusions</p> <p>These findings suggest that the fronto-central N200 component, conceived an index of "reorientation of attention", represents a correlate of an error signal, being produced when representation of the actual response and the required response are compared. Furthermore the magnitude of the amplitude of the N200 rests on the relation between the present and the previous stimulus.</p

    Optimizing detection methods for terahertz bioimaging applications

    Get PDF
    The article of record as published may be found at http://dx.doi.org/10 .1117/1.OE.54.6.067107We propose a new approach for efficient detection of terahertz (THz) radiation in biomedical imaging applications. A double-layered absorber consisting of a 32-nm-thick aluminum (Al) metallic layer, located on a glass medium (SiO2) of 1 mm thickness, was fabricated and used to design a fine-tuned absorber through a theoretical and finite element modeling process. The results indicate that the proposed low-cost, double-layered absorber can be tuned based on the metal layer sheet resistance and the thickness of various glass media. This can be done in a way that takes advantage of the diversity of the absorption of the metal films in the desired THz domain (6 to 10 THz). It was found that the composite absorber could absorb up to 86% (a percentage exceeding the 50%, previously shown to be the highest achievable when using single thin metal layer) and reflect <1% of the incident THz power. This approach will enable monitoring of the transmission coefficient (THz transmission fingerprint) of the biosample with high accuracy, while also making the proposed double-layered absorber a good candidate for a microbolometer pixel’s active element

    Public Perspectives on Lifestyle-Related Behavior Change for Dementia Risk Reduction:An Exploratory Qualitative Study in The Netherlands

    No full text
    BACKGROUND: There is accumulating evidence that addressing modifiable risk and protective factors has an impact on dementia rates. Insight into the public's perspectives on dementia risk reduction is needed to inform future individual-level interventions and public health approaches. OBJECTIVE: This study explores the publics' openness towards dementia risk reduction and willingness towards changing lifestyle behavior to reduce the future risk for dementia. METHODS: Using a screening questionnaire, participants were purposively selected based on lifestyle behaviors that are associated with dementia risk. One-on-one interviews were used to explore their openness towards dementia risk reduction and willingness towards behavior change. Independently, two researchers performed an inductive content analysis. RESULTS: Interviews were conducted with 23 participants aged from 40 to 79 years. Main themes that were identified from the data were: 1) abstractness of dementia risk reduction, 2) ambivalence towards changing behavior, 3) negative self-image and low behavioral control, and 4) all-or-nothing thinking about lifestyle change. CONCLUSIONS: The concept of dementia risk reduction seems difficult to translate to the personal context, particularly if individuals perceive that dementia would occur decades in the future. This is problematic because a large proportion of the public needs a healthier lifestyle to reduce the incidence of dementia. Translating healthy intentions into behavior is complex and involves overcoming a variety of barriers that complicate dementia risk reduction initiatives. Support is needed for individuals who experience additional obstacles that obstruct commencing to a healthier lifestyle (e.g., negative self-image, engaging in multiple unhealthy behaviors, unrealistic perceptions about lifestyle change)

    Wireless Local Danger Warning: Cooperative Foresighted Driving Using Intervehicle Communication

    No full text
    International audienceVehicle collision mitigation, cooperative driving, and vehicle-to-vehicle (V2V) and/or vehicle-to-infrastructure (V2I) communication constitute a broad multidisciplinary research field that focuses on improving road safety. Statistics indicate that the primary cause of most road accidents is vehicles' excessive speed and delayed drivers reaction. Thus, road safety can be improved by early warning based on V2V communication. An innovative system called wireless local danger warning (WILLWARN), which is based on recent and future trends of cooperative driving, enables an electronic safety horizon for foresighted driving by implementing onboard vehicle-hazard detection and V2V communication. One of the key innovative features of the proposed system is the focus on low penetration levels in rural traffic by a new message-management strategy that is based on storing warning information in the vehicle and distributing warnings through communication, particularly with oncoming traffic. The system timely warns the driver about a dangerous situation ahead by decentralized distribution of warnings and incident messages via ad hoc intervehicle communication. The WILLWARN system is based on a modular object-oriented architecture consisting of the V2V communication module (VVC), the warning message-management module (WMM), the hazard-detection-management module (HDM), the hazard-warning-management module (HWM), a Global Positioning System (GPS) receiver, and various onboard sensors. In this paper, all system modules, as well as their interoperability, are presented in detail
    corecore